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Abstract: Artificial Intelligence (AI) is an interdisciplinary research field with widespread applications. It aims at
developing theoretical, methodological, technological, and applied systems that simulate, enhance, and assist human
intelligence. Recently, notable accomplishments of artificial intelligence technology have been achieved in astronomical
data processing, establishing this technology as central to numerous astronomical research areas such as radio
astronomy, stellar and galactic (Milky Way) studies, exoplanets surveys, cosmology, and solar physics. This article
systematically reviews representative applications of artificial intelligence technology to astronomical data processing,
with comprehensive description of specific cases: pulsar candidate identification, fast radio burst detection, gravitational
wave detection, spectral classification, and radio frequency interference mitigation. Furthermore, it discusses possible

future applications to provide perspectives for astronomical research in the artificial intelligence era.
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Astronomy is an observation-based science, for the
development of which large volumes of data are essential.
Recently, advances in manufacturing and information tech-
nology have considerably enhanced the data-collection capa-
bilities of astronomical observation instruments, introduc-
ing the “big data” methodology into astronomy. With the
development of an increasing number of large telescopes,
large-scale digital sky surveys have become prominent in
astronomy. In recent years, China has established several
large astronomical ground-based observation facilities,
such as the Five-hundred-meter Aperture Spherical Tele-
scope (FAST)[!, the Shanghai 65 m Radio Telescope
(Tianma)!?l, and the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (LAMOST)BI. Other large tele-
scopes, for example, the Qitai 110 m Radio Telescope
(QTD), are also under construction. Moreover, China
has launched the Dark Matter Particle Explorer (DAMPE
or Wukong)P®l and Advanced Space-based Observatory-
Solar (ASO-S)I®] satellites, with plans to launch and oper-
ate other space telescopes in succession. Future large astro-
nomical instruments will generate daily considerable vol-

umes of observation data. For example, the current data
volume generated by a single sky survey represents tens
of terabytes and survey dataset size is gradually increas-
ingl’l. This considerable data volume increase requires
new processing methods, such as the big data methodol-
ogy, creating new, specific challenges. Astronomy has
become a data-driven and data-intensive sciencel8l. Real-
time processing, transmission, storage, and analysis of
large data volumes are serious problems that must be
addressed.

Al is a branch of computer science that aims to study
and develop theories, methods, technologies, and applied
systems capable of simulating, supporting, and extending
human intelligence. It establishes principles to implement
computer systems that mimic human intelligence,
enabling it to perform higher-level applications. As an
emerging technology, Al has found widespread applica-
tions in various fieldsl®!. Following the “third industrial
revolution” represented by the emergence of the internet
and mobile communication technology, the emergence of
Al, jointly with big data, is seen as initiating the “fourth
industrial revolution”. The Al framework encompasses
three standard paradigms for data structure extraction:
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(1) Supervised learning(!%]: data consist of pairs of
input items and labels. Supervised learning is considered
a particular powerful form of nonlinear regression that
extracts patterns from existing item/label pairs to predict
labels for new items.

(2) Unsupervised learning[!!l: input data lack labels;
therefore, the objective is to identify underlying statisti-
cal structures. Unsupervised learning is an extension of tra-
ditional statistical techniques such as clustering and princi-
pal component analysis (PCA). Modern Al systems also
often rely on self-supervised learning, which achieves
results similar to unsupervised learning by automatically
labeling data, for example, by applying the same label to
artificially generated variations of an object.

(3) Reinforcement learning!!2l: its purpose is to estab-
lish methods or strategies to achieve specific objectives,
using feedback from previous actions.

Astronomy includes several interconnected fields,
such as astrophysics and astrochemistry. Its purpose is to
identify and formulate the physical laws that govern the
properties and evolution of the universe by observing astro-
nomical phenomena, such as celestial body motion or cos-
mic redshift!!3]. Astronomical research relies on extensive
data and computational power. For specialized tasks, Al
technology often outperforms traditional methods that rely
on human intervention or rule-based programming; there-
fore, it often achieves comparable or better performance
than human scientistsl!4l. One of the most frequent applica-
tions for Al in astronomy is image processing. With Al-
based image analysis and processing techniques,
astronomers discover celestial objects and analyze phenom-
ena more rapidly. For example, during systematic galac-
tic surveys, Al image-processing techniques allow fast
and accurate assessment of galactic motion and discrimina-
tion between evolution patterns of distinct galaxies. There-
fore, this technology has become essential for astronomy
and has improved human understanding of the
universel!’]. Astronomical research requires large vol-
umes of data, especially for continuous observations. Al
is a useful tool for data processing, providing astronomers
with fast and accurate handling of extensive datasets, with
the means to extract valuable information from them. This
is essential to investigate the physical laws of the uni-
verse and to analyze the internal structures of celestial bod-
iesl!0]. For example, for astrophysics research, particle
accelerators are vital tools that simulate cosmic condi-
tions, such as magnetic fields and particle flows(!7]. Such
simulations require substantial computational power. Al
technology assists astronomers by optimizing computa-
tional resources and enhancing efficiency, thereby saving
time and financial resources.

The application of Al technology in astronomy origi-
nated in the 1990s[!8], when artificial neural networks first
yielded promising experimental results[!]. As indicated by
statistical data from “arXiv:astro-ph” (search on papers
with titles, abstracts, or keywords containing terms or abb-
reviations such as “machine learning”, “ML”, “artificial
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intelligence”, “Al”, “deep learning”, or “neural networks”;
https://arxiv.org/)l1®1 and from the astrophysics paper
database (search on “machine learning” and “deep learn-
ing”; https://ui.adsabs.harvard.edu/)[2%, Al applications for
astronomy emerged in the early 2000s, with an increas-
ing interest after approximately 2015. Collectively, these
papers indicate that AI technology has been extensively
applied in diverse astronomical research fields, often with
better performance than traditional methods. In particular,
its effectiveness was demonstrated for the analysis and pro-
cessing of extremely large astronomical datasets (in a big-
data context).

This article primarily provides a review of representa-
tive applications of Al technology in the field of astronomi-
cal data processing and presents the latest developments
in this domain. Additionally, it discusses future applica-
tions of Al in astronomy, providing new perspectives for
astronomical data processing. The remaining sections of
this article are organized as follows: Section 2 primarily
introduces the application of Al technology to pulsar
search; Section 3 focuses on its role for fast radio burst
(FRB) detection; Section 4 describes Al application for
gravitational wave (GW) detection; Section 5 outlines the
use of AI technology for spectrum classification; Section
6 discusses its role for radio frequency interference (RFI)
mitigation; Section 7 includes a summary of the article
and details the perspectives for Al development in astro-
nomical data processing.

Pulsars are extremely dense celestial objects with pow-
erful magnetic fields, formed in the late evolutionary
stages of stars with masses between 8 and 25 times that
of the Sun, often after a supernova explosion. The cen-
tral body of a pulsar is typically a collapsed neutron star
with a material density billions of times greater than that
of water2!l, Radiation from pulsars emanates from the mag-
netic polar regions of the neutron star. When these align
with the Earth’s line of sight, the emitted radiation can be
detected. By analyzing pulsar radiation signals, the distribu-
tion and properties of the interstellar matter and magnetic
field in the Milky Way can be studied?2!. In standard pul-
sar search methods, the research protocol is divided into
numerous consecutive steps, including several data prepro-
cessing tasks such as “dispersion” and matched filtering.
After processing, a list of potential pulsar candidates is
obtained, from which human judgment identifies true pul-
sar signals. This approach requires considerable data stor-
age space and computational resources, resulting in a
large number of pulsar candidates and low search effi-
ciencyl?l. The introduction of Al technology has
markedly improved the efficiency of pulsar searches and
candidate identification, allowing for more comprehen-
sive analyses of the spatial distribution and temporal evolu-
tion of pulsars.
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Morello et al. introduced a neural-network-based pul-
sar identification method called Straightforward Pulsar
Identification using Neural Networks (SPINN, Fig. 1)[24],
designed to manage the increasing data volumes collected
during pulsar searches. This method was cross-validated
on candidate pulsars identified during the High Time Reso-
lution Universe (HTRU) survey. It demonstrated its abil-
ity to identify all known pulsars present in the survey
data, while maintaining an extremely low false-positive
rate of 0.64%. The SPINN method reduces the number of
pulsar candidates by four orders of magnitude; thus, it
will be applicable to future large-scale pulsar searches.

To improve the speed and accuracy of single-pulse
searches, Pang et al. proposed a new two-stage, single-
pulse search approach that combined unsupervised and
supervised machine learning to automatically identify and
classify single pulses from radio pulsar search datal?3l,
Results showed that this method detected 60 known pul-
sars from a benchmark dataset and 32 additional known pul-
sars not included in the benchmark dataset. Five faint sin-
gle-pulse candidates emitting multiple periodic signals
were also detected and warrant further investigation.

Additionally, Devine et al. introduced a machine-
learning-based method to identify and classify dispersed
pulse groups (DPGs) in single-pulse search outputs26].
This method comprises two stages. First, peak identifica-
tion is conducted with the Recursive Algorithm for Peak
[Dentification (RAPID). RAPID identifies local maxima

by detrending (extracting the slope) the relationship
between signal-to-noise ratio and dispersion to isolate mean-
ingful features. In the second stage, supervised machine
learning is employed to classify the DPGs. Devine et al.
analyzed 350 MHz drift scan data acquired by the Green
Bank Telescope (GBT) in May—August 2011 (42 405 obser-
vations) and derived comprehensive classification for an
unlabeled dataset of more than 1.5 million DPGs.

Machine learning methods have notably improved the
efficiency of pulsar identification, but they require a sub-
stantial amount of labeled data, consuming time and com-
putational resources. For this reason, scientists are now eval-
uating the potential of deep learning methods for pulsar
identification. Balakrishnan et al. introduced the semi-
supervised generative adversarial network (SGAN) model
(Fig. 2) that outperforms supervised machine learning
methods relying primarily on unlabeled datasets!?”). Experi-
mental results demonstrated that the model achieved high
accuracy and average Fl-score both equal to 94.9% when
trained on 100 labeled and 5000 unlabeled pulsar candi-
dates. The final model version, trained on the “HTRU-S
Lowlat Survey” dataset, achieved accuracy and average
Fl-score of 99.2% for both, with a recall rate of 99.7%.
Subsequently, Yin et al. proposed a pulsar candidate identi-
fication framework that combines the Deep Convolu-
tional Generative Adversarial Network (DCGAN) and
deep aggregated  residual  network  (ResNeXt)
architectures[?8l. To minimize sample imbalance, DCGAN
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Fig. 1. Principle of the Straightforward Pulsar Identification using Neural Networks (SPINN) method!?4l.
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Fig. 2. Principle of the Semi-supervised Generative Adversarial Network (SGAN) modell27],

generates artificial but quasi-real pulsar images. Observed
and generated pulsar candidates are used simultaneously
to train the identification model ResNeXt. Experimental
validation with the “HTRU Medlat Training Dataset”
demonstrated the performance of the Yin et al. frame-
work, with estimated values of 100% for the accuracy,
recall, and Fl-score. To further improve the efficiency

and accuracy of pulsar candidate identification, Liu et al.
recently introduced the multi-modal fusion-based pulsar
identification model (MFPIM, Fig. 3)[2°1. This model
treats each diagnostic image of a pulsar candidate as a
modality and successively applies multiple convolutional
neural networks (CNNs) to extract meaningful features
from the diagnostic images. After feature fusion, MFPIM

» Loss,

Losss

Loss;

Loss,

Fig. 3. Principle of the Multi-Modal Fusion-based Pulsar Identification Model (MFPIM)I2],
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yields commonalities between different modalities in
high-dimensional space, ensuring that the model has suc-
cessfully extracted and used all complementary informa-
tion contained in the diagnostic images. This approach
demonstrably outperformed current supervised learning
algorithms in terms of classification performance. Experi-

mental results yielded a model accuracy higher than 98%
for pulsar identification from the FAST dataset and accu-
racy and Fl-score both exceeding 99% for the HTRU
dataset.

The AI models currently applied to pulsar candidate
identification are listed in Table 1.

Table 1. Applications of some AI models in pulsar candidate identification

Model Ref. Year Notes
A technique was proposed to automatically identify reliable pulsar candidates
Artificial Neural Eatough et al.>% 2010 __from pulsar surveys using artificial neural networks.
Networks (ANN) Zhu et al. 3] 2014 A new artificial intelligence program, the Pulsar Image Classification System
) (PICS), has been developed to identify pulsars.
Devine et al.[26] 2016 A new two-stage method has been proposed to identify and classify dispersed
Support Vector ’ pulse groups (DPGs) in the output of single pulse searches.
Machine (SVM) Guo et al.?2] 2019 A framework that combines Deep Convolutional Generative Adversarial
’ Networks (DCGAN) with Support Vector Machines (SVM) has been proposed.
Lyon et al.3%] 2016 A novel online processing method bas.ed on decision trees has been proposed for
Decision Tree (DT) ’ the rapid identification of pulsar candidates.
Tan et al.[34] 2017 An ensemble class.1 ter consisting of five different decision trees has been
developed to identify pulsar candidates in the LOTAAS dataset.
Wang et al139] 2019 A deep convolutional neural network (CNN) with 11 layers has been designed
’ for classifying pulsar candidates. i
Convolutional Neural Zeng et al. 6] 2020 A cascaded convolutional neural network (CCNN) has been designed for
Networks (CNN) ’ ) identifying FAST pulsar candidate data.
Liu et al.29] 2023 A multi-modal fusion-based pulsar identification model (MFPIM) has been
’ proposed to enhance the efficiency and accuracy of pulsar candidate recognition.
Liu et al.37] 2021 A 14-layer deep residual network (ResNet) was designed for the
Deep Residual ’ classification of pulsar candidates. ]
The AdaBoost-MICNN framework was proposed to address the issue of poor
Networks (DRN) Zhao et al.[38] 2022 performance in pulsar candidate identification algorithms caused

by sample imbalance.

FRBs are deep-space astrophysical phenomena charac-
terized by short and intense emissions (“explosions”) of
electromagnetic radiation that last for milliseconds.
Despite their extremely short duration, they exhibit excep-
tionally high brightness, with an energy release equiva-
lent to the daily energy output of the Sun. The instanta-
neous radiation flux can reach tens of Jy[**]. Lorimer et
al. first discovered FRBs while analyzing historical data
from the Australian Parkes Telescope pulsar surveyll,
Thornton et al. defined the term “FRB” for such events,
upon discovering four additional radio burst dispersion mea-
surements in new survey data from the Parkes
Telescopel*l. In April 2020, the first galactic (within the
Milky Way) FRB was detected. Named FRB 20200428, it
was generated by a magnetar (SGR J1935+2154) with an
extremely strong magnetic field[*2!. This unprecedented dis-
covery supported the hypothesis that FRBs detected at cos-
mological distances were produced by magnetars. Since
the first discovery, FRBs have been studied extensively.
Standard FRB search methods involve visual identifica-
tion from large astronomical observation datasets. Rapid
advances in Al technology will enable real-time FRB
search and multifrequency tracking observations.

The random forest (RF) is a supervised machine learn-
ing algorithm. It can be described as an ensemble of deci-
sion trees that collectively form a robust classifier or regres-
sor[®]. Wagstaff et al. improved the preexisting Very

Long Baseline Array fast radio transients (V-FASTR)
experiment by designing a machine learning classifier,
derived from the RF algorithm, to automatically filter out
known types of pulses*ll. By extracting specific data fea-
tures and applying the RF model, candidate objects are clas-
sified into predefined RFI (Section 6) and FRB cate-
gories. The model achieved a classification accuracy of
98.6% for historical data and 99% or better for new obser-
vational data.

Single-pulse observation sensitivity is limited by RFI.
To minimize this problem, Michilli et al. introduced the sin-
gle-pulse searcher (SPS), an RF-derived machine learn-
ing classifier!*3). Its purpose is to identify astrophysical sig-
nals in strong RFI environments. After optimization, the
SPS was able to process observational data from the Low
Frequency Array (LOFAR) Tied-Array All-Sky Survey
(LOTAAS) and to accurately identify pulses from FRB
source FRB 121102. Furthermore, Farah et al. developed
an RF-based candidate classification pipeline for the
Molonglo Radio Telescope using low-latency machine
learning (Fig. 4)4¢l. With this pipeline, they detected six
FRBs from an accumulated dataset representing 344
search days between June 2017 and December 2018.

CNNs are among the feedforward neural networks
most widely used for deep learning studies, with major
achievements in image processing. A CNN notably
reduces the number of parameters that need to be trained
by optimizing the use of shared parameters and local con-
nectivity through convolution and pooling operations.

Astronomical Techniques and Instruments, 1(1): 1-15, 2024 5



; BP nodes
@1
. ------- .| mEmvpALL |||
! list
@
@ -
o
@
@
® |
— Feature
extractor

Known
pulsar?

Ye:
Pulsar ||
list

Random
forest
classifier

Voltage dump
email client

Fig. 4. Candidate classification pipeline using a low-latency machine learning algorithm!46],

This, in turn, minimizes computational and storage
costs*7]. Recently, deep learning techniques relying on
CNNs have increasingly been applied to FRB searches,
effectively solving the low-efficiency problem of stan-
dard visual screening for FRB candidates. Cabrera-Vives
et al. first applied a CNN to detect astronomical transient
events[*8]. Their model was designed to improve over the
Deep High Cadence Transient Survey (Deep-HiTS) detec-
tion framework, itself implementing rotation-invariant
deep CNNs was used to identify real sources in transient
candidate images with high temporal resolution from the
HiTS dataset. The model was validated and demonstrated
higher performance (accuracy of 99.45% =+ 0.03%) than
simple RF models, with errors reduced by approximately
half. Connor and van Leeuwen also applied deep learn-
ing to the single-pulse classification problem and devel-
oped a deep neural network (DNN) within a hierarchical
framework (Fig. 5)*%, to sort events by their probability
of being astrophysical transients. Input to the DNN of Con-
nor and van Leeuwen can include one or more data prod-
ucts (e.g., dynamic spectra and multibeam information) on
which the neural network is simultaneously trained. FRB
simulations provided the model with a larger and more
diverse training set than when using single pulses from pul-
sars as training samples. Agarwal et al. proposed 11 deep
learning models to classify FRB and RFI candidates!>0l.
Using transfer-learning techniques, they trained the state-
of-the-art Fast Extragalactic Transient Candidate Hunter
(FETCH) model on frequency—time and dispersion mea-
sure—time images using data from L-band observations of
the GBT and from the 20 m telescope also located at the
Green Bank Observatory. All models achieved accuracies
and recall rates higher than 99.5%.

GW is currently a major research topic in physics
and astronomy. It represents spacetime ripples generated
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by the acceleration of massive objects; its frequencies
extend over an extremely broad range (nanohertz—kilo-
hertz) that covers numerous physical processes and astro-
nomical phenomena. Detecting GW with frequencies as
low as the nanohertz is important for astronomers to under-
stand cosmic structure and growth, evolution, and merg-
ing processes of large celestial bodies, such as supermas-
sive black holes. It also provides physicists with informa-
tion on fundamental principles of spacetimel3!l. However,
accurately detecting and analyzing GW signals from com-
plex background noise is a challenging task. Application
of Al technology has been successful in distinguishing gen-
uine GW signals from false signals caused by other noise
sources.

An artificial neural network (ANN) is a nonlinear,
adaptive, information-processing model consisting of
numerous interconnected processing units. It comprises an
input layer, one or more hidden layers for data process-
ing, and an output layerl32l. Data from external sources
are collected in the input layer, processed in the hidden lay-
ers, and then the output layer provides one or more
results depending on the function of the specific network.
Kim et al. employed an ANN to search for GW signals
related to short gamma-ray bursts(>3]. They input multidi-
mensional samples composed of statistical and physical
quantities from a coherent search pipeline into their ANN
to distinguish simulated GW signals from the back-
ground noise. Experimental results showed that their
ANN improved the efficiency of GW signal classifica-
tion relatively to standard methods. Mytidis et al. studied
the applicability to r-mode GW detection of three
machine learning algorithms: ANNSs, support vector
machines (SVM), and constrained subspace classifiersi4l.
They confirmed that machine learning algorithms achieve
higher detection efficiency than standard methods.
Krastev used deep learning techniques for rapid identifica-
tion of transient GW signals from binary neutron star merg-
ers (Fig. 6)[%]. The author proved that a deep CNN
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trained on 100 000 data samples can swiftly identify such
signals and distinguish them from noise and binary black
hole merger signals, thus validating the potential of
ANNSs for real-time GW detection. Mogushi et al. devel-
oped the NNETFIX (“A Neural NETwork to ‘FIX’ GW sig-
nals coincident with short-duration glitches in detector
data”) algorithm[5¢l, NNETFIX uses ANNSs to denoise tran-
sient GW signals by reconstructing missing data portions
caused by overlapping glitches, thereby enabling recalcula-
tion of the astrophysical signal localization. Experimental
results demonstrated that NNETFIX successfully recon-

Input gravitational-wave time series
(1x40 960 vector)

Convolutional layer

structed most interferometer single-peak signals, with sig-
nal-to-noise ratio greater than 20, from binary black hole
mergers. Wardega et al. proposed an ANN-based method
for optical transient detectionl®’). They created two ANN
models: a CNN and a dense layer network, then tested
them on samples generated from real images. Experimen-
tal results indicated an accuracy of 98% for this method.
In the subsequent TOROS (Transient Robotic Observa-
tory of the South) collaborative project following the grav-
ity wave event GW 170104, the CNN and dense layer net-
work achieved accuracies of 91.8% and 91%, respec-

Classification
(Softmax)

Fully connected layer

Noise
BBH signal

BNS signal

Fig. 6. GW signals detection from binary neutron star mergers using artificial neural networks (ANN)[55],
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tively.

The advantage of deep learning over standard
machine learning is its capacity to manage more complex
data and tasks. Deep learning models can extract features
automatically and execute classification, regression, and
clustering tasks. Training the models on large datasets
also improves their accuracy and generalization capabili-
ties. In contrast, standard machine learning requires man-
ual feature extraction and model trainingl*8]. Therefore,
deep learning methods have been applied to GW detec-
tion, with notable results. George and Huerta introduced
an innovative end-to-end time-series signal processing
method called “deep filtering”, derived from two DNNs,
with which weak time-series signals with non-Gaussian
noise are rapidly detected and processed®]. This method
has been applied to detection and parameter estimation of
binary black hole mergers. It expands the range of GW sig-
nals detection by ground-based instruments. Moreover,
Wei and Huerta demonstrated that CNN-based deep learn-
ing algorithms are powerful enough to analyze GW
despite their non-Gaussian and non-stationary naturel60],
They illustrated the denoising capabilities of such algo-
rithms by analyzing GW signals generated by binary
black hole mergers GW150914, GW170104, GW170608,
and GW170814. Chan et al. applied CNNs to GW sig-
nals from core-collapse supernovae (Fig. 7). Addition-
ally, by simulating time series of GW detector observa-
tions, they proved that CNNs relying on the explosion
mechanism can detect and classify GW signals even
weaker than the background noise. The true-positive rates
for waveforms R3E1AC and R4E1FC 1 at 60 kiloparsecs
(kpc) were 52% and 83%, respectively. For waveforms
s20 and SFHx at 10 kpc, true-positive rates were 70%
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Convolutional layer
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and 93%, respectively. Furthermore, Beheshtipour and
Papa implemented a deep learning network model on the
basis of a deep learning network model called “Mask R-
CNN” to identify candidate signal clusters from continu-
ous GW search output data, then evaluated model perfor-
mancel®2. For high-frequency signals, this model achieved
detection efficiencies higher than 97% with very low
false-alarm rates. For low-frequency signals, the model
maintained reasonable detection efficiency. On this basis,
a second clustering network was designed to identify
candidate signal clusters from weak signalsl®]. Using the
0O, search data release from the Laser Interferometer
Gravitational-Wave Observatory available from the “Ein-
stein@Home” initiative (https://einsteinathome.org/), the
cascading architecture of these two networks was vali-
dated to identify continuous GW candidate signal clus-
ters with large differences in signal strengths. The cascad-
ing network demonstrated excellent performance, achiev-
ing an accuracy of 92% at a normalized signal amplitude
of 1/60 v/Hz and exceeding 80% for weak signals at a nor-
malized amplitude of 1/80 +/Hz.

A fundamental task in stellar spectroscopy is system-
atic spectral classification. In particular, subtype classifica-
tion is very important to study stellar evolution and iden-
tify rare celestial objectsl®]. The considerably large astro-
nomical spectral datasets contain information on unique
celestial objects of major scientific significance, such as
supernovae. Supernovae are violent explosions that occur
in the late evolutionary stages of sufficiently massive
stars; their extreme brightness exceeds that of their entire

13x1x4 13x1x4 1x2 32

rJH

11x1x4 13x1x4 13x1x4 64 3

Fully connected layer

Fig. 7. Diagram of the convolutional neural network (CNN) architecture for GW signal detection from core-collapse supernovae

and noisy data classification(6!l,
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host galaxy. Supernovae are among the most dramatic
known astronomical events.

The study of supernovae is central to the field of astro-
physics; their discovery represented a crucial step in the
development of stellar evolution theories. Supernova
research is also a cross-disciplinary science focusing on
an object at the intersection of astrophysics, as a major
stage of stellar evolution, and physics, as a natural labora-
tory to study extreme environments®]. With observato-
ries operating continuously and their equipment regularly
upgraded, the available number of recorded spectra is con-
stantly increasing and represents a major challenge for man-
ual processing. The introduction of Al technology should
provide notable support to improve the efficiency of spec-
tral classification. Machine-learning algorithms have been
used in astrophysical spectroscopy since their early stages
of development, with promising results. The backpropaga-
tion neural network (BPNN) is a widely used neural net-
work model trained with an error backpropagation algo-
rithm. Because of its reduced training time, it is among
the most common neural network models(®]. For exam-
ple, Gulati et al. and von Hippel et al. applied two-layer
BPNNs to stellar spectral classification, achieving good
results in the optical and ultraviolet spectral domains at
medium and low resolutions[®4 71, However, neuron selec-
tion markedly influences classification accuracy. Bailer-
Jones et al. employed multiple BPNNs to construct a classi-
fication model that correctly classified 95% or more of
dwarf and giant stars by luminosity, with high statistical
confidencel®®]. Additionally, they demonstrated that PCA
was highly effective to compress spectra, with a compre-
ssion ratio exceeding 30 and minimal loss of information.

Thus, Fuentes and Gulati combined MultiLayer Percep-
tron (MLP) neural networks with a PCA algorithm for sub-
type classification of stellar spectra and achieved classifica-
tion confidence levels exceeding 95% for dwarf and giant
star luminosities[®]. They also applied PCA for feature
extraction from stellar spectra, with crucial results for fea-
ture extraction methods. Bazarghan proposed an ANN-
based self-organizing map algorithm that does not require
training data to classify stellar spectral’®l. Tested on 158
stellar spectra from the Jacoby, Hunter, and Christian
library, this algorithm achieved a classification accuracy
of 92.4%. Furthermore, Navaro et al. introduced an ANN
system trained on a set of line-strength indices derived
from temperature and luminosity-sensitive spectra
(Fig. 8)U711. This system enabled the classification of low
signal-to-noise spectra, but it can be applied to other spec-
tra with similar or higher signal-to-noise ratios. Finally,
Bu et al. applied isometric feature mapping, SVM, and
locally linear embedding algorithms to classify stellar spec-
tral72.731.

Additionally, Cai et al. implemented “weighted fre-
quent pattern trees” to establish association rules between
stellar spectral’4l. They applied the information entropy the-
ory to determine single-attribute weights of stellar spectra,
using a compromise between geometric mean and maxi-
mum values to calculate the weights for multilevel item
sets. Experimental results indicated that this method success-
fully retrieved the main stellar spectral type characteris-
tics. Liu et al. investigated large-scale spectral data classifi-
cation with a nonlinear ensemble classification method,
the “non-linearly assembling learning machine”l73]. In this
method, a large-scale spectral dataset is initially divided

FIRST STAGE CLASSIFICATION
According to spectral interval covered by input spectra
it is applied the corresponding neural network:

Net0, AA3933-6563
Input: 20 indices
Output: spectral type

Netl, AA4227-6200
Input: 15 indices
Output: spectral type

Net2, AA3933-6162
Input: 18 indices
Output: spectral type

SECOND STAGE CLASSIFICATION
Input: pre-classifed spectra divided in 3 groups:

' N
0O, B and A0-A2 stars A, F, G and K0-K3 stars K and M stars
NET3AL NET2ARL NET2GL NET2GRL NET2KRL
3933-5900 4300-6563 3933-6200 4200-6563 4861-6563
LN A

"

Output: spectral type and luminosity class

Fig. 8. ANN system for spectrum classification!7!l.
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into subsets. Traditional classifiers are applied to each sub-
set to produce partial results, subsequently aggregated to
yield the final classification.

Machine learning methods have markedly improved
data processing speed, but manual feature extraction has
simultaneously increased analysis complexity. Therefore,
a substantial interest in further enhancing spectral classifica-
tion performance exists in the scientific community.
Jankov and Prochaska proposed the CNN-based “spectral
image typer” to classify stellar spectral datal’l. This algo-
rithm achieved an accuracy of 98.7% on both the valida-
tion and image-testing datasets. Additionally, Bu et al. intro-
duced a method combining CNNs and SVMs
(CNN+SVM method) to classify hot subdwarfs within
LAMOST spectral’’l. Applying this method to a sample
from the LAMOST Data Release 4 dataset yielded an F1-
score of 76.98%, demonstrating that the CNN+SVM
method is highly suitable to identify hot subdwarfs in
large-scale spectral surveys. Moreover, Sharma et al. pre-
sented a CNN-based automated stellar spectral classifica-
tion method (Fig. 9), reducing classification errors to 1.23
spectral subclasses!’8l. The pre-trained model was fur-
ther applied to the Sloan Digital Sky Survey (SDSS)
database to classify stellar spectra with signal-to-noise
ratios greater than 20. To solve the problem of simultane-
ous spectral and luminosity types classification, Hong et
al. introduced the “Classification model of Stellar Spec-
tral type and Luminosity type based on Convolution Neu-
ral Network™!7. In this model, CNNs allow for spectral
feature extraction and incorporate attention blocks to dis-
criminate between features and focus on essential ones;
pooling operations are then conducted for dimensionality
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space

reduction, thereby compressing model parameters; finally,
the fully connected layers are used for feature learning
and stellar classification. In experiments with the LAM-
OST Data Release 5 dataset (more than 71 282 spectra,
each with more than 3 000 features), this model achieved
an accuracy of 92.04% for spectral type classification and
83.91% for simultaneous spectral and luminosity types clas-
sification.

Finally, a “transformer” is a deep learning model archi-
tecture initially proposed by Vaswani et al. in 2017 and pri-
marily applied to language processing. Application of trans-
former networks to astronomical research has gradually
increased, primarily for astronomical data management
and related issues. Liu and Wang implemented a high-per-
formance hybrid deep learning model, the Bidirectional
Encoder—Decoder Transformer (BERT)-CNN, to evaluate
transformer performance for spectral classification’%]. The
BERT-CNN model first uses stellar spectral data as input,
then extracts feature vectors from the spectra with the trans-
former module before feeding these feature vectors into
the CNN module to obtain classification results with a clas-
sifier called “softmax”. Experimental results demon-
strated that the BERT-CNN model effectively improved
spectral classification performance, providing a valuable
tool for application of deep learning concepts to astronomi-
cal research.

6. RADIO FREQUENCY INTERFERENCE
MITIGATION

RFI is a disturbance that affects a communication or
Depth 5 Depth 6 Depth 7 Depth 8

| l

UpSampling1D: 2

Unsupervised
training phase

UpSampling1D: 2
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Fig. 9. Semi-supervised one-dimensional CNN classification model based on autoencoders!’8l.
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observation system, for example by conduction or energy
emissions in the radio spectral range. RFI is generated by
external sources such as human daily activities or tele-
communications. During radio astronomy observations,
various forms of RFI occur, interfering with the target sig-
nal by entering radio telescope receivers, reducing the
observation signal-to-noise ratio, and introducing errors
into the recorded data. With continuous advances in sci-
ence and technology, an increasing number of radio fre-
quencies is allocated to daily activities. The artificial
radio frequency signals thus generated cause severe interfer-
ences to deep-space astronomical signals, increasing the
electromagnetic background complexity of telescope envi-
ronments(80],

RFI mitigation is a major issue in signal processing
for radio astronomy and its mitigation is essential for sensi-
tive astronomical measurements such as pulsar timing.
However, standard RFI mitigation methods are affected
by low efficiency and signal loss. Al technology can effi-
ciently identify and suppress RFI, thereby enhancing the
signal-to-noise ratio of astronomical observation data.

Akeret et al. established a deep learning method to
eliminate RFI signals with a specific type of CNN, U-
Net, in order to discriminate between astronomical sig-
nals and RFI features in two-dimensional time-series obser-
vation data from radio telescopes!3!].

The study of such time series was the first applica-
tion of deep learning technology to RFI mitigation. Czech
et al. proposed a method to classify transient (temporal
domain) RFI sources using deep learning techniques, by
combining the CNN and long short-term memory (LSTM)
architectures (CNN+LSTM method)[®2l. They tested their

Amplitude

 H/2W/22F
H/4xW/4x4F

Prediction

method on a dataset containing 63 130 transient signals
from eight common RFI sources, achieving good classifica-
tion accuracy. Kerrigan et al. presented a deep fully convo-
lutional neural network (DFCN) to predict RFI by combin-
ing interferometric amplitude and phase measurements of
signal visibility (Fig. 10)#3]. Their experiments demon-
strated a markedly improved time-efficiency for RFI predic-
tion, with a comparable RFI identification rate. Liang et
al. designed an algorithm to detect and extract HI (neu-
tral atomic hydrogen) galactic signals using the Mask R-
CNN network in combination with the PointRend method.
They created a realistic dataset for neural network train-
ing and testing by simulating galaxy signals and RFI as
potentially observed by FAST and selected the best-per-
forming neural network architecture from an initial set of
fivel34, This architecture successfully segmented HI galac-
tic signals from time-domain ordered data contaminated
by RFI, achieving an accuracy of 98.64% and a recall
rate of 93.59%. Sun et al. proposed a robust CNN model
for RFI identification[®3]. They overlaid artificial RFI on
data simulated by SKAI1-LOW, creating three visibility
function datasets. Experimental results indicated a satisfac-
tory Area Under the Curve (AUC) of 0.93, demonstrat-
ing high accuracy and precision. To further assess model
effectiveness, they also conducted RFI analyses with real
observational data from LOFAR and the Meer Karoo
Array Telescope (MeerKAT). The results indicated excel-
lent performance, with overall effectiveness comparable to
that of the AOFlagger!3¢] software and occasionally outper-
forming existing methods. Similarly, Li et al. proposed
another robust CNN-based method combining the Radio
Astronomy Simulation, Calibration, and Imaging Library

H/2ExW/2Ex2F

H/28 X W/2L 124 1F

O -layer normalization

O -dropout

Fig. 10. Deep fully convolutional neural network (DFCN) classification model!331.

Astronomical Techniques and Instruments, 1(1): 1-15, 2024 11



(RASCIL) with the RFI simulation method from the Hydro-
gen Epoch of Reionization Array (HERA) telescope to
generate RFI-affected simulated SKA1-LOW observa-
tions®7]. The CNN was trained on a subset of simulated
data and subsequently tested on three additional datasets
subjected to RFI with different intensities and waveform.
Results indicated effective RFI recognition by the pro-
posed model from the simulated SKA1-LOW data, with
an AUC of 0.93.

This review described representative astronomical
applications of Al technology: pulsar candidate identifica-
tion, FRB and GW detection, stellar spectral classifica-
tion, and RFI mitigation. Al technology allows scientists
to rapidly and accurately extract meaningful information
from large-size astronomical observation datasets, thereby
enabling deeper studies of the universe and celestial struc-
tures. Benefiting from the rapid development of informa-
tion technology, Al technology is increasingly applied to
astronomical researches. However, despite its usefulness,
its limitations must be considered; these include inter-
pretability (difficulty in analyzing the physical meaning of
the results) and uncertainty (limited confidence level).

Future work should focus on improving the inter-
pretability and credibility of Al models by employing
advanced methods to interpret extracted features and predic-
tive outcomes, with the purpose of improving their useful-
ness for astronomical researches. Furthermore, dedicated
training datasets should be established to improve the
usability of AI models. The emergence of generative Al
systems such as ChatGPT will likely transform scientific
research considerably. The means of controlling and opti-
mizing these advanced technologies for useful applica-
tion to astronomical research should be carefully assessed
and planned.

With continuous hardware performance improve-
ments and gradual refinement of deep learning algorithms,
deep learning techniques and neural networks will
become increasingly prominent in astronomical data
processing. Scientists expect the next generation of net-
work architectures and training methods to improve identifi-
cation accuracy for complex data patterns. Moreover, hard-
ware performance improvements will allow the process-
ing of increasingly larger and more diverse astronomical
datasets.

In terms of network architecture, future designs will
produce specialized and efficient neural networks, more
adapted to the specificities of astronomical datasets and pos-
sibly including innovative structures such as CNNs, recur-
rent neural networks, or attention mechanisms designed to
better capture spatiotemporal relationships, sequence infor-
mation, and astronomy-specific features. In training meth-
ods, the introduction of new optimization techniques and
adaptive learning strategies will enable researchers to
account more effectively for noise, variations, and com-
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plex structures present in astronomical data. Moreover,
the development of new machine learning techniques,
such as transfer learning or reinforcement learning, should
provide better solutions for model training with limited vol-
umes of labeled data, thereby improving model generaliza-
tion performance. Additionally, application of deep learn-
ing to astronomical data processing should enable scien-
tists to investigate the joint processing of multi-modal
data, for example, multiwavelength or multisource
datasets, and to extract more comprehensive information
from the observations. This holistic use of multi-modal
data adopts a promising perspective toward a deeper under-
standing of astronomical phenomena and increased syn-
ergy between datasets. Overall, the development prospects
of AI technologies for astronomical data processing are
high. They will provide astronomers with better tools for
deeper study of the universe.
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